

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD WEIGHTAGE FRAMEWORK FOR MQP 1: II PUC MATHEMATICS(35):2024-25

Chapter	CONTENT	Number of Teaching hours	PART A 1 mark		PART B 2 mark	PART C 3 mark	PART D 5 mark	PART E		Total
			мсq	FB				6 mark	4 mark	
1	RELATIONS AND FUNCTIONS	9	1			1	1			9
2	INVERSE TRIGONOMETRIC FUNCTIONS	6	1		1	1				6
3	MATRICES	9	1			1	1			9
4	DETERMINANTS	12	1		1		1		1	12
5	CONTINUITY AND DIFFERENTIABILITY	20	2	1	1	1	1		1	17
6	APPLICATION OF DERIVATIVES	10	2	1	1	1				8
7	INTEGRALS	22	2		1	1	1	1		18
8	APPLICATION OF INTEGRALS	5					1			5
9	DIFFERENTIAL EQUATIONS	10		1	1		1			8
10	VECTOR ALGEBRA	11	2	1	1	1				8
11	THREE D GEOMETRY	8	1		1	1				6
12	LINEAR ROGRAMMING	7						1		6
13	PROBABILITY	11	2	1	1	1				8
	TOTAL	140	15	5	9	9	7	2	2	120

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD Model Question Paper -1

II P.U.C : MATHEMATICS (35): 2024-25

Time : 3 hours

Max. Marks : 80

Instructions :

- 1) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2) PART A has 15 MCQ's ,5 Fill in the blanks of 1 mark each.
- 3) Use the graph sheet for question on linear programming in PART E.
- 4) For questions having figure/graph, alternate questions are given at the end of question paper in separate section for visually challenged students.

PART A

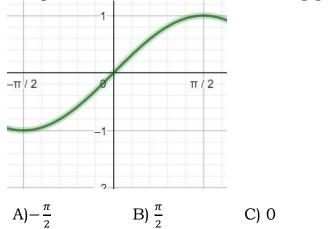
I.Answer ALL the Multiple Choice Questions $15 \times 1 = 15$

- Let the relation R in the set A = { x ∈ Z: 0 ≤ x ≤ 12}, given by R={(a, b): |a-b| is multiple of 4}, then [3], the equivalence class containing 3 is A) {1,5,9}
 B) φ
 C)A
 D) {3, 7,11}
- **2.** If $\cot^{-1} x = y$, then

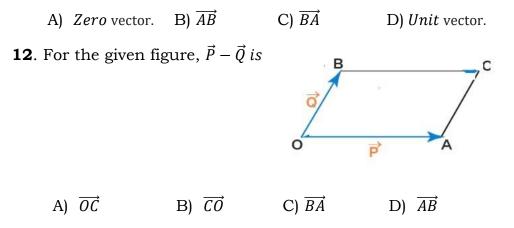
(A)
$$0 \le y \le \pi$$
 (B) $0 < y < \pi$ (C) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ (D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

- 3. If A = [a_{ij}] is a symmetric matrix of order m × n then
 (A) m=n and a_{ij}=0 for i=j
 (C) a_{ij}=a_{ji} for all i,j
 (C) a_{ij}=a_{ji} for all i,j
 (D) m=n and a_{ij}=-a_{ji} for all i,j
- **4.** If $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$ then the value of x is equal to A) 2 B) 4 C) 8 D) $\pm 2\sqrt{2}$.
- **5.** Statement 1: Left hand derivative of f(x) = |x| at x = 0 is -1. Statement 2: Left hand derivative of f(x) at x = a is $\lim_{h \to 0} f(a-h)$
 - A) Statement 1 is true, and Statement 2 is false.
 - B) Statement 1 is true, and Statement 2 is true, Statement 2 is correct Explanation for Statement 1
 - C) Statement 1 is true, and Statement 2 is true, Statement 2 is not a correct Explanation for Statement 1
 - D) Statement 1 is false, and Statement 2 is false.

6. The derivative of log(secx+tanx) with respect to x isA)secxB) tanxC) secx.tanx



7. The absolute maximum value of the function f given by


D)8

 $f(x) = x^3, x \in [-2, 2]$ is A)-2 B)2 C)0

8. The point of inflection for the following graph is

- D) point of inflection does not exist
- **9.** $\int e^x \left(\frac{1}{x} \frac{1}{x^2}\right) dx =$ A) $e^x + c$ B) $\frac{e^x}{x^2} + c$ (C) $\frac{e^x}{x} + c$ (D) $\frac{-e^x}{x} + c$
- **10.** $\int x \sin x dx =$
 - A) -xcosx sinx + cB) xcosx + sinx + cC) xcosx sinx + cD) -cosx sinx + c
- **11**. The projection vector of the vector \overrightarrow{AB} on the directed line *l*, if angle $\theta = \frac{\pi}{2}$ will be.

13. The direction cosines of negative *z*-axis.

$$(A) -1, -1, 0 \qquad (B) 0, 0, -1 \qquad (C) 0, 0, 1 \qquad (D) 1, 1, 0$$

14. If $P(A) = \frac{1}{2}$, P(B) = 0, then P(A|B) is

A) 0 B)
$$\frac{1}{2}$$
 C) 1 D) not defined

15. An urn contains 10 black and 5 white balls, 2 balls are drawn

one after the other without replacement, then the probability that both drawn

balls are black is

A) $\frac{3}{7}$ B) $\frac{4}{9}$ C) $\frac{2}{3}$ D) $\frac{2}{9}$

II. Fill in the blanks by choosing the appropriate answer from those given in the bracket (0, 1, 2, 3, 4, 5) $5 \times 1 = 5$

- 16. The number of points in R for which the function f(x) = |x|+ |x + 1| is not differentiable, is_____
- **17**. The value of $\hat{\imath}.(\hat{\jmath} \times \hat{k}) \hat{\jmath}.(\hat{k} \times \hat{\imath}) \hat{k}.(\hat{\jmath} \times \hat{\imath})$ is_____
- **18**. The sum of the order and degree of the differential equation.

$$2x^2\left(\frac{d^2y}{dx^2}\right) - 3\left(\frac{dy}{dx}\right) + y \quad is_$$

19. The total revenue in rupees received from the sale of x unit of a product is given by $R(x)=2x^2 - 4x + 5$, The marginal revenue when x=2 is_____

20. If $P(A) = \frac{3}{k}$, $P(A \cap B) = \frac{2}{5}$ and $P(B|A) = \frac{2}{3}$, then k is _____

PART B

Answer any SIX questions:

6 × 2 = 12

- **21**. Show that $\sin^{-1}(2x\sqrt{1-x^2}) = 2\sin^{-1}(x), \ -\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$.
- **22**. Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear using determinants.
- **23.** Find $\frac{dy}{dx}$, if $2x + 3y = \sin x$.
- **24.** Find the local maximum value of the function $g(x) = x^3 3x$.
- **25**. Evaluate $\int \sin 3x \cos 4x \, dx$.

26. Find the general solution of the differential equation $\frac{ydx-xdy}{y} = 0$.

27. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 15$.

28. Find the equation of the line in vector form that passes through

- the point with position vector $2\hat{i} \hat{j} + 4\hat{k}$ and is in the direction $\hat{i} + 2\hat{j} \hat{k}$.
- **29**. Prove that if E and F are independent events, then so are the events E and F'.

PART C

Answer any SIX questions:

30.

Show that the relation R in the set of real numbers
$${f R}$$
 defined as

 $R = \{(a,b) : a \le b\}$, is reflexive and transitive but not symmetric.

- **31.** Prove that $\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$.
- **32**. Express $\begin{bmatrix} 3 & 5 \\ 1 & -1 \end{bmatrix}$ as the sum of a symmetric and a skew symmetric matrix.
- **33.** Find $\frac{dy}{dx}$ if $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta \theta \cos \theta)$.
- 34. Find the intervals in which the function f(x)=(x-2)³(x+4)³ isa) increasing b)decreasing.

35. Find
$$\int \frac{x}{(x+1)(x+2)} dx$$
.

- **36.** If $\vec{a}, \vec{b} \ll \vec{c}$ are three vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each vector is orthogonal to sum of the other two vectors then find $|\vec{a} + \vec{b} + \vec{c}|$.
- **37.** Find the distance between the lines $\vec{r} = 6\hat{\imath} + 2\hat{\jmath} + 2\hat{k} + \lambda(\hat{\imath} 2\hat{\jmath} + 2\hat{k})$

and $\vec{r} = -4\hat{\imath} - \hat{k} + \mu (\hat{\imath} - 2\hat{\jmath} - 2\hat{k})$.

38. Bag I contains 4 Red and 4 Black balls, Bag II contains 2 Red and 6 Black balls .One bag is selected at random and a ball is drawn is found to be Red. What is the probability that bag I is selected?

PART D

Answer any FOUR questions:

39. State whether the function $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = 3 - 4x is one-one, onto or bijective. Justify your answer.

40. If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
, prove that $A^3 - 6A^2 + 7A + 2I = O$.

- **41**. Solve the following system of equations by matrix method: 2x + y z = 1; x + y = z and 2x + 3y + z = 11.
- **42**. If $y = 3\cos(\log x) + 4\sin(\log x)$, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.

43. Find the integral of
$$\frac{1}{\sqrt{a^2 - x^2}}$$
 with respect to x and evaluate $\int \frac{dx}{\sqrt{7 - x^2}}$.

6×3 = 18.

 $5 \times 4 = 20$.

44. Solve the differential equation dy/dx + y secx = tanx (0≤ x ≤ π/2).
45. Find the area of the circle x² + y² = a² by the method of integration.

PART E

Answer the following questions:

46. Maximize and Minimise ; z = 3x + 9y subject to constraints $x+3y \le 60$, $x+y \ge 10$, $x \le y$, $x \ge 0$, $y \ge 0$ by graphical method.

OR

Prove that
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$
 and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} dx$.

47. Find the value of k so that the function $f(x) = \begin{cases} kx+1, & \text{if } x \le 5 \\ 3x-5, & \text{if } x > 5 \end{cases}$, at x = 5 is a

continuous function.

OR

If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ then verify that $(AB)^{-1} = B^{-1}A^{-1}$.

PART F (For Visually Challenged Students only)

4

- **8.** The point of inflection of the function $f(x)=\sin x$ in the interval $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ is A) $-\frac{\pi}{2}$ B) $\frac{\pi}{2}$ C) 0 D) point of inflection does not exist
- **12.** In a parallelogram OACB, $\overrightarrow{OA} = \overrightarrow{P}$ and $\overrightarrow{OB} = \overrightarrow{Q}$, then $\overrightarrow{P} \overrightarrow{Q}$ is
 - A) \overrightarrow{OC} B) \overrightarrow{CO} C) \overrightarrow{BA} D) \overrightarrow{AB}
