

INDIAN SCHOOL MUSCAT HALF YEARLY EXAMINATION SUBJECT: MATHEMATICS

CLASS: XII Sub.Code:041 Time Allotted: 3 Hrs.

22.09.2019 Max.Marks: 80

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper contains 36 questions.
- (iii) Question 1- 20 in Section A are MCQ/Very short-answer type questions carrying 1 mark each.
- (iv) Question21-26 in Section B are short-answer type questions carrying 2 marks each.
- (v) Question 27-32 in Section C are long-answer-I type questions carrying 4 marks each.
- (vi) Question 33-36 in Section D are long-answer-II type questions carrying 6 marks each.

	SECTION A	
1.	If f,g: $R \rightarrow R$ be two functions defined as $f(x) = x + x$ and $g(x) = x - x$, for all x in R, find fog(-5).	1
2.	Find the value of $\cos^{-1}\cos\left(\frac{7\pi}{6}\right)$.	1
3.	Find the value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(\frac{1}{2}\right)$	1
4.	Find the area bounded by the curve $y = \cos x$, between $x = 0$ and $x = 2\pi$.	1
5.	Evaluate: $\int log x dx$	1
6	Evaluate: $\int_{-1}^{1} [x]dx$	1
7.	Evaluate: $\int_0^{2\pi} \sin x dx$	1
8.	Evaluate: $\int \frac{1-\cos 2x}{1+\cos 2x} dx$	1
9.	Find the area bounded by the lines $y = x$ and $x = 1$ in the first quadrant.	1
10.	A point C in the domain of a function f at which either $f'(c) = 0$ or f is not differentiable is called	1

11.	$f(x) = \begin{cases} ax^2 + 1, & x > 1 \\ x + a, & x \le 1 \end{cases}$ is differentiable at $x = 1$, then find the value of a.	1
12.	a) 2 b) 1 c) 0 d) $\frac{1}{2}$ $f(x) = \begin{cases} xSin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases}$ is continuous at $x = 0$. Find k.	1
10	a) 8 b) 1 c) -1 d) 0	
13.	(k, x = 0 a) 8 b) 1 c) -1 d) 0 If $y = x + e^x$, then $\frac{d^2x}{dy^2} =$	1
	a) $\frac{1}{(1+e^x)^2}$ b) $\frac{-e^x}{(1+e^x)^2}$ c) $\frac{-e^x}{(1+e^x)^3}$ d) e^x	
14.	Let R be the relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer.	1
	A) $(2,4) \in R$ B) $(3,8) \in R$ C) $(6,8) \in R$ D) $(8,7) \in R$	1
15.	Let $f : R \to R$ be defined as $f(x) = x^4$. Choose the correct answer. a)F is one- one onto b) f is many-one onto c) f is one-one but not onto d) f is neither one-one nor onto.	
16.	The interval in which $y = x^2 e^{-x}$ is increasing is $a) (-\infty, \infty)$ b) $(-2, 0)$ c) $(2, \infty)$ d) $(0, 2)$	1
17.	The line $y = x + 1$ is a tangent to the curve $y^2 = 4x$ at the point a) $(1, 2)$ b) $(2, 1)$ c) $(1, -2)$ d) $(-1, 2)$	1
18.	Choose the correct principal value branch of the range of $y = \tan^{-1} x$. $a) \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ $b) \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$ $c) [0, \pi]$ $d) (0, \pi)$	1
19.	Find the area bounded by $f(x) = x $, between $x = -3$ and $x = 3$. a) 0 b) 18 sq.units c) 9 sq.units d) 6 sq.units	1
20.	Find the derivative of $Sin(x)^3$ with respect to $Cos(x)^3$. $a) - tan(x^3)$ b) $-cot(x^3)$ c) $cot(x^3)$ d) $tan(x^3)$	1
	SECTION B	
21.	Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	2
	OR	
	Evaluate: $sin\left(\frac{1}{2}cos^{-1}\frac{4}{5}\right)$	
22.	Find the value of k, if the following function is continuous at 1	2
	$f(x) = \begin{cases} k(x^2 - 2), & x \le 1 \\ 4x + 1, & x > 1 \end{cases}$	
23.	$f(x) = \begin{cases} k(x^2 - 2), & x \le 1 \\ 4x + 1, & x > 1 \end{cases}$ Find $\frac{dy}{dx} if$, $y = \sin^{-1}(\frac{1 - x^2}{1 + x^2})$ $0 < x < 1$	2

24.	Find $\int_{1}^{4} f(x)dx$, $if(x) = \begin{cases} 7x & \text{if } 1 \le x \le 3\\ 8 & \text{if } : 3 \le x \le 4 \end{cases}$ OR	
	<i>Evaluate</i> : $\int \frac{5^{(7x-5)}}{5^{(2x+10)}} dx$	2
25.	The total cost $c(x)$ associated with the production of x units of an item is given by	2
	$C(x) = 0.007x^3 - 0.003x^2 + 15x + 4000$. Find the marginal cost when 17 units are produced.	
26.	Evaluate: $\int \sqrt{\frac{a+x}{a-x}} - \sqrt{\frac{a-x}{a+x}} dx$	2
	SECTION C	
27.	Simplify: $\tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$	4
28.	$f: \mathbf{N} \to \mathbf{N}$ be defined by	4
	$f(x) = \begin{cases} x + 1, & \text{if } x \text{ is odd} \\ x - 1, & \text{if } x \text{ is even} \end{cases} $ for all $x \in \mathbb{N}$, show that f is bijective.	
29.	Find the intervals in which the functions given below are strictly decreasing or strictly increasing:-	
	$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$	4
	OR	
	Find the equations of the tangent and normal to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point ,where it cuts x-axis.	
30.	Find $\frac{dy}{dx}$, $y = (sinx)^{cosx} + x^{sinx}$	4
31.	If $f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$, is differentiable. Find a and b .	4
	OR	
	$\left(\begin{array}{c} \frac{1-\sin^3 x}{3\cos^2 x}, x < \frac{\pi}{2} \end{array}\right)$	
	If $f(x) = \begin{cases} \frac{1-\sin^3 x}{3\cos^2 x}, & x < \frac{\pi}{2} \\ a, & x = \frac{\pi}{2} \\ \frac{b(1-\sin x)}{(\pi-2x)^2}, & x > \frac{\pi}{2} \end{cases}$ is continuous at $x = \frac{\pi}{2}$, find a and b.	
32.	Evaluate: $\int \frac{x+2}{2x^2+6x+5} dx$	4

		<u> </u>
	SECTION D	
	SECTION D	
33.	Let f: $\mathbb{N} \to \mathbb{R}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. show that $f: \mathbb{N} \to S$, where S is the range of f is invertible. Find the inverse of f.	6
	OR	
	Show that the relation R in the set N of Natural numbers given by	
	$R = \{(a, b): a - b \text{ is a multiple of } 3\}$ is an equivalence relation.	
	Find the area of the region enclosed between the two circles $x^2 + y^2 = 4$ and	
34.	$(x-2)^2 + y^2 = 4$	6
	OR	
	Using integration find the area of region bounded by the triangle whose vertices are $(1,0)$, $(2,2)$ and $(3,1)$.	
35.	Evaluate: $\int \sqrt{\tan x} + \sqrt{\cot x} \ dx$	6
36.	Show that the right circular cone of least curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.	6