VIDEO COURSES

for Government Exams

From the oldest and most trusted name in Exam Preparation which gave us Career Power, Bankersadda, Sscadda, here is the latest offering - Video Courses that are tailor-made for the Govt. Job aspirants of digital India. Various banking and SSC exams are conducted online with regular changes to exam pattern and level of questions. We understand the changing needs of the students and have devised a unique solution, making preparation easy, cost-effective and efficient.

Video courses for banking and SSC consist of exhaustive video lectures for government exams which are pre-loaded on an SD card. We offer these courses in two variants: [Android Tab + SD-Card] or [SD Card only]. The SD Card can be run on your personal android device as well. The video courses will run on the Adda247 mobile app, the number one App for Bank and SSC exam preparation.

Available Courses

Banking Complete Video Course

Maths Video Course for SSC Exams

Maths + English Video Course for SSC Exams

SSC Complete
Video Course

To Purchase visit : elearning.adda247.com

For any query : Call us at +91-90691 42412•Email us at elearning@adda247.com

Solutions

Direction (1-5)

S1. Ans.(a)
S2. Ans.(c)
S3. Ans.(a)
S4. Ans.(b)
S5. Ans.(a)

S6. Ans. (a)
Sol.
This is question of Coding-Decoding based on new pattern. In these questions following logic's are applied to decode the code:-
$1^{\text {st }}$ letter of the code:- If total number of letters in the word are 5 then special character $-\%$ is used in stating of code.
If total number of letters in the word are less than 5 then special character $-\$$ is used in stating of code. But If total number of letters in the word are greater than 5 then special character -@ is used in stating of code.
$2^{\text {nd }}$ letter of the code:- Addition of place value of all the consonants present in the word.
$3^{\text {rd }}$ letter of the code:- Opposite of $1^{\text {st }}$ letter of the word.

S7. Ans. (b)

Sol.
This is question of Coding-Decoding based on new pattern. In these questions following logic's are applied to decode the code:-
$1^{\text {st }}$ letter of the code:- If total number of letters in the word are 5 then special character $-\%$ is used in stating of code.

If total number of letters in the word are less than 5 then special character $-\$$ is used in stating of code. But If total number of letters in the word are greater than 5 then special character -@ is used in stating of code.
$2^{\text {nd }}$ letter of the code:- Addition of place value of all the consonants present in the word. $3^{\text {rd }}$ letter of the code:- Opposite of $1^{\text {st }}$ letter of the word.

S8. Ans. (c)

Sol.

This is question of Coding-Decoding based on new pattern. In these questions following logic's are applied to decode the code:-
$1^{\text {st }}$ letter of the code:- If total number of letters in the word are 5 then special character $-\%$ is used in stating of code.
If total number of letters in the word are less than 5 then special character $-\$$ is used in stating of code. But If total number of letters in the word are greater than 5 then special character - @ is used in stating of code.
$2^{\text {nd }}$ letter of the code:- Addition of place value of all the consonants present in the word. $3^{\text {rd }}$ letter of the code:- Opposite of $1^{\text {st }}$ letter of the word.

If total number of letters in the word are 5 then special character - \% is used in stating of code.
If total number of letters in the word are less than 5 then special character $\mathbf{- \$}$ is used in stating of code.

Opposite of $1^{\text {st }}$ letter of the word.

But If total number of letters in the word are greater than 5 then special character-@ is use

S9. Ans. (d)

Sol.

This is question of Coding-Decoding based on new pattern. In these questions following logic's are applied to decode the code:-
$1^{\text {st }}$ letter of the code:- If total number of letters in the word are 5 then special character $-\%$ is used in stating of code.
If total number of letters in the word are less than 5 then special character $-\$$ is used in stating of code.

But If total number of letters in the word are greater than 5 then special character -@ is used in stating of code.
$2^{\text {nd }}$ letter of the code:- Addition of place value of all the consonants present in the word. $3^{\text {rd }}$ letter of the code:- Opposite of $1^{\text {st }}$ letter of the word.

S10.Ans. (e)

Sol. This is question of Coding-Decoding based on new pattern. In these questions following logic's are applied to decode the code:-
$1^{\text {st }}$ letter of the code:- If total number of letters in the word are 5 then special character $-\%$ is used in stating of code.
If total number of letters in the word are less than 5 then special character $-\$$ is used in stating of code. But If total number of letters in the word are greater than 5 then special character -@ is used in stating of code.
$2^{\text {nd }}$ letter of the code:- Addition of place value of all the consonants present in the word. $3^{\text {rd }}$ letter of the code:- Opposite of $1^{\text {st }}$ letter of the word.

Solution (11-15)

Amit(60) Chetan(30) Esha(27) Fiza(36) Geeta(18) Hina(15) Dinesh(16) Bipu(55)

S11. Ans(a)
S12. Ans(c)
S13. Ans(a)
S14. Ans(b)
S15. Ans(a)

S16. Ans.(d)
Sol.

S17. Ans.(d)
Sol.

Solution (18-20):

3m

S18. Ans.(c)
S19. Ans.(a)
S20. Ans.(a)

Solutions (21-25):

$8 \dagger \mathbf{R}$ (Biology)	
7-P(Chemistry)	
	O(Sanskrit)
	T(Science)
	S(Math)
	Q(Physics)
	N(English)
	-M(Hindi)

S21. Ans. (a)
S22. Ans. (c)
S23. Ans. (b)
S24. Ans. (c)
S25. Ans. (d)

S26. Ans. (e)
Sol. T is daughter in law of P .

S27. Ans. (d)

S28. Ans. (b)
Sol.

S29. Ans. (d)

S30. Ans. (e)
Sol.

Facing South

IBPS RRB [PO+CLERK]

$\frac{1}{\mathbf{Y}} \mathbf{1}, \mathbf{1} \quad 170$ TOTAL TESTS

- 70 Full Length Mocks

S31. Ans.(a)
Sol.

S32. Ans.(e)
Sol.

S33. Ans.(e)
Sol.

S34. Ans.(c)

Sol.

S35. Ans.(e)
Sol.

Solution(36-40):

```
Year Age Persons
1947 70year F
1952 65year G
1960 57year E
1968 49year A
1982 35year D
1990 27year C
1997 20year B
```

S36. Ans.(c)
S37. Ans.(a)
S38. Ans.(b)
S39. Ans.(a)
S40. Ans.(b)

S41. Ans.(a)

Sol. Pattern is $\times 1, \times 1.5, \times 2.5, \times 4, \times 65, \ldots$
$\therefore ?=1170 \times(4+6.5)=1170 \times 10.5=12285$

S42. Ans.(a)

Sol.

Pattern is $+112,+125,+139,+154,+170$

$\therefore ?=820+154=974$

S43. Ans.(b)
Sol. Pattern is $+2^{3},+3,+4^{3},+5,+6^{3}$
$\therefore ?=81+6^{3}=297$

S44. Ans.(d)
Sol.

$?=177+92=269$

S45. Ans.(c)
Sol. Pattern is $(\times 2-1),(\times 3+1),(\times 4-1),(\times 5+1),(\times 6-1)$
\therefore ? $=556 \times 6-1=3335$

S46. Ans.(c)

Sol.
$\mathrm{A}=\mathrm{P}+\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}$
$\mathrm{P}=19,200-4,800=$ Rs. 14400
Let each installment $=$ Rs. x monthly
$A=\left[x+\left(x+\frac{x \times R \times 1}{100}\right)+\left(x+\frac{x \times R \times 2}{100}\right)+\ldots+\left(x+\frac{x \times R \times 4}{100}\right)\right]$
$\Rightarrow\left(14400+\frac{14400 \times 12 \times 5}{100 \times 12}\right)=\left[x+\left(\frac{12 \mathrm{x}}{12 \times 100}+\mathrm{x}\right)+\left(\mathrm{x}+\frac{12 \mathrm{x} \times 2}{12 \times 100}\right)+\ldots+\left(\mathrm{x}+\frac{12 \mathrm{x} \times 4}{1200}\right)\right]$
$\Rightarrow 15120=5 x+\frac{x}{10}$
$\Rightarrow \mathrm{x}=\frac{151200}{51}$
= Rs. 2964.70

S47. Ans. (c)
Sol. Given,
$\mathrm{S}_{1}=$ Rs. 160, Loss $=20 \%$
$\mathrm{S}_{2}=$? and Gain $\%=25 \%$
$\therefore \mathrm{S}_{2}=160 \times \frac{100}{100-20} \times \frac{125}{100}=$ Rs. 250
Hence, Percentage Increase in Selling Price $=\frac{250-160}{160} \times 100=56.25 \%$
Desired Difference $=56.25 \%-20 \%=36.25 \%$

S48. Ans. (a)
Sol.
$\% \mathrm{~L}=\frac{\text { Sold for a rupee }- \text { Buy for a rupee }}{\text { Sold for a rupee }} \times 100=\frac{50-46}{50} \times 100=8 \%$
S49. Ans. (d)
Sol. Share of one grandchild $=\frac{1}{10} \times 1.25=0.125$ lakh
\therefore Each son will get $=8 \times 0.125=$ Rs. 1 lakh
\therefore Share of 3 sons $=$ Rs. 3 lakhs
Hence, share of two daughters $=2 \times 1.25=$ Rs. 2.5 Lakh
Total share of sons and daughters $=$ Rs. 5.5 lakhs
\therefore Wife's share $=\frac{2}{5} \times 5.5=$ Rs. 2.2 lakhs
Now, share of three grandchildren $=3 \times 0.125=$ Rs. 0.375 lakh
\therefore Required answer $=$ Rs. $(2.2+0.375)$ lakh $=$ Rs. 257500

S50. Ans.(c)

Sol. Area of ground $=\frac{1000}{0.25}=4000 \mathrm{~m}^{2}$
Breadth $=50 \mathrm{~m}$
Length $=\frac{4000}{50}=80 \mathrm{~m}$
New length $=80+20=100 \mathrm{~m}$
New area $=100 \times 50=5000 \mathrm{~m}^{2}$
So, expenditure $=5000 \times 0.25=$ Rs 1250

S51. Ans.(a)

Sol.
$\frac{\frac{325}{250}}{\frac{550}{375}}=\frac{325 \times 375}{250 \times 550}=39: 44$
S52. Ans.(c)
Sol. 2016 : No. of consumers $=\frac{220}{100}[225]=495$ thousand
Electricity consumption $=550$ Lacs
\therefore Electricity consumption per consumer $=\frac{550 \times 100000}{495 \times 1000}$
$=111$ units per consumer

2015 : Electricity consumption per consumer $=\frac{550 \times 100000}{375000}$
≈ 147 units per consumer
Hence, the Impact is reduction of 36 units per consumer

S53. Ans.(b)

Sol. Total consumer all over the year $=225+250+300+350+375=1500$ thousand
Desired value $=\frac{325 \times 100000}{1500000}=21.5$ times approx

S54. Ans.(d)

Sol. Total units in 2011 and $2013=650$ Lacs
Total units in 2012 and $2014=900$ Lacs
Desired value $=\frac{250}{900} \times 100 \approx 28 \%$ approx

S55. Ans.(c)

Sol. It is clear from the graph that unit consumption is highest in 2014 while consumers-electricity units difference is maximum as well. Hence, Ratio of unit consumption to the number of consumers is maximum in 2014.

S56. Ans.(a)

Sol.
$\approx \frac{576}{80} \times \frac{400}{40} \times \frac{900}{40}=1620$
S57. Ans.(c)
Sol. $\approx 68 \times 14-14 \times 13=770$

S58. Ans.(d)

Sol. $\approx 5467-3245+1123-2310=1035$

S59. Ans.(c)

Sol. $\approx 40 \times 6-250+700=690$

S60. Ans.(b)
Sol.
$=\frac{52001 \times 29}{61 \times 41}=600$

S61. Ans.(b)

Sol. Let, average no. of mistakes per page for remaining pages be x, then, $1007 \times 2=434+(1007-612) \times x$
or, $2014=434+395 x$
or, $x=\frac{1580}{395}=4$

S62. Ans.(b)
Sol.
Required ratio $=\frac{\frac{25}{100} \times 2+\frac{75}{100} \times 3}{\frac{75}{100} \times 2+\frac{25}{100} \times 3}$
$=\frac{\frac{2}{4}+\frac{9}{4}}{\frac{6}{4}+\frac{3}{4}}$
$=\frac{11}{9}$

S63. Ans.(b)

Sol. Let, A have ' x ' no. of guavas
And B have ' y ' no. of guavas
ATQ,
$x-\frac{x}{4}=y+2+\frac{x}{4}$
or, $\frac{x}{2}=y+2 \ldots \ldots$.
and,
$y+\frac{7}{10} y=x-\frac{7 y}{10}+4$
or, $12 y=5 x+20$
solving (i) and (ii),
$\mathrm{x}=44, \mathrm{y}=20$
Total guavas $=44+20=64$

S64. Ans.(c)

Sol. Cost price for retailer $=30.09 \times \frac{4}{5}=24.072$
Cost price for manufacturer $=24.072 \times \frac{100}{120} \times \frac{100}{118}$
$=24.072 \times \frac{5}{6} \times \frac{50}{59}$
$=17$

S65. Ans.(b)
Sol. Total selling price $=7200 \times 10=72000$
Total no. of pens manufactured $=7200 \times \frac{10}{9}=8000$
Total cost price of pens $=72000 \times \frac{100}{125}=57600$
Cost of each pen $=\frac{57600}{8000}=7.2$
S66. Ans.(e)
Sol. $1981-1562.5+1728=$? -26.49
? $=2172.98$

S67. Ans.(c)
Sol.
$4 \sqrt{3}+4 \sqrt{5}+4 \sqrt{11}+18-11=?+7+4 \sqrt{11}$
$?=4(\sqrt{3}+\sqrt{5})$
S68. Ans.(b)
Sol. $50+9996-529=9517$

S69. Ans.(c)
Sol.
$23+\frac{28}{100} \times 280-\frac{89}{100} \times 56$
$23+78.4-49.84=51.56$
S70. Ans.(c)
Sol.
$\frac{842}{25} \times \frac{1280}{37}+\frac{1848}{52} \times \frac{2089}{57}$
$1165.14+1302.45=2467.59$
Solution (71-75)-

| | Total questions | Maximum | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| marks | | Rttempt | Right
 question | Wrong
 question | Marks |
| obtained | | | | | |

S71. Ans.(c)
Sol. Total number of question $=170$, no of questions left $=170-119=51$
S72. Ans.(c)
Sol. Marks in GA $=9.75$

S73. Ans.(a)
Sol. $17-5=12$

S74. Ans.(c)
Sol. total marks obtained $=109$

S75. Ans.(e)
Sol. Total number of incorrect questions $=122-85=37$

S76. Ans.(c)

Sol.

I. $42 \mathrm{p}=168$
II. $\sqrt{q+888}-\sqrt{144}=\sqrt{324}$
$\mathrm{p}=4$

$$
\begin{aligned}
& \Rightarrow \sqrt{q+888}=18+12=30 \\
& \Rightarrow q=900-888 \\
& \Rightarrow p=12
\end{aligned}
$$

$\mathrm{p}<\mathrm{q}$
S77. Ans.(a)
Sol.
I. $144 \mathrm{p}^{2}=25$
II. $36 q=21-6$
$\mathrm{p}= \pm \frac{5}{12}$

$$
\mathrm{q}=\frac{15}{36}=\frac{5}{12}
$$

$\mathrm{p} \leq \mathrm{q}$
S78. Ans.(c)
Sol.

$$
\begin{aligned}
& \text { I. } \frac{2 \sqrt{\mathrm{p}}}{70}+\frac{3 \sqrt{\mathrm{p}}}{70}=\frac{7}{49 \sqrt{\mathrm{p}}} \text { II. } \frac{10}{\sqrt{\mathrm{q}}}+\frac{2}{\sqrt{\mathrm{q}}}=4 \sqrt{\mathrm{q}} \\
& \Rightarrow \frac{5 \sqrt{\mathrm{p}}}{70}=\frac{1}{7 \sqrt{p}} \quad \Rightarrow q=3 \\
& \Rightarrow \mathrm{p}=2 \\
& \mathrm{p}<\mathrm{q}
\end{aligned}
$$

S79. Ans.(c)
Sol.
I. $3 p^{2}-27 p+60=0$
II. $4 q^{2}-52 q+168=0$
$\Rightarrow 3 p^{2}-15 p-12 p+60=0$
$\Rightarrow 3 \mathrm{p}(\mathrm{p}-5)-12(\mathrm{p}-5)=0$
$\Rightarrow \mathrm{p}=4,5$

$$
\begin{aligned}
& \Rightarrow 4 q^{2}-52 q+168=0 \\
& \Rightarrow 4 q^{2}-24 q-28 q+168=0 \\
& \Rightarrow 4 q(q-6)-28(q-6)=0 \\
& \Rightarrow q=6,7
\end{aligned}
$$

$\mathrm{p}<\mathrm{q}$

S80. Ans.(d)

Sol.

I. $7 p^{2}-21 p-33 p+99=0$
II. $4 q^{2}-10 q-6 q+15=0$
$\Rightarrow 7 \mathrm{p}(\mathrm{p}-3)-33(\mathrm{p}-3)=0$
$\Rightarrow \mathrm{p}=3, \frac{33}{7}$
$\Rightarrow 2 q(2 q-5)-3(2 q-5)=0$
$\Rightarrow \mathrm{q}=\frac{3}{2}, \frac{5}{2}$
$P>Q$

VIDEO ${ }^{(1)}$ COURSE

Compliment your classroom with Banking Video Courses visit: videocourses.adda247.com

Study on the GO with the Adda247 App

Fulfill your Dream of Government Job visit: careerpower.in

