AN IIT/IIM ALUMNI C口MPANY

SECTION-WISE QUANT SET FOR SIDBI EXAM SOLUTIONS

QUANT SOLUTION

51. (3); I. 3 men alone can do the work in $\frac{5 \times 4}{3}=\frac{20}{3}$ days. Now, with the help of the question's information, one woman alone can do the work in
$=\frac{1}{4}-\frac{3}{20}=\frac{1}{10}$ ie, 10 days
\therefore two women together can do the same work in 5 days.
II. $4(3 \mathrm{M}+\mathrm{W})=5(2 \mathrm{M}+\mathrm{W}) \Rightarrow \mathrm{W}=2 \mathrm{M}$

One the relationship between M and W is known, the required number of days can bedetermined. Hence, either statement I alone or II alone is sufficient to answer the question.
52. (5); Let the bigger and the smaller no. be B and S respectively. Then
I. $\frac{3 B}{5}=S$
II. $\frac{B}{2}=\mathrm{S}-5$
Or, $S-\frac{B}{2}=5$

Combining both the above equations, we get $\mathrm{B}=50$ and $\mathrm{S}=30$
Hence, both the statements together are required for answering the questions.
53. (1); I. Ratio of interest $=\frac{100}{10 \times 2}=5 \%$

From statement II, we do not know the borrowed amount, so the rate of interest can't b determined. Therefore, only statement I alone is sufficient to answer the question.
54. (5); Combing both the statements together, marked Price of the article $=2500 \times \frac{128}{100} \times \frac{100}{80}=r s .4000$
55. (5); If we combine both the statement together, the speed with stoppage can be found out and then the person stops how long per hour can be determined. In this case the person stops for 15 min in an hour.
56. (3); $26+27+16+33+27.6+42.5=172.1$
57. (2); $\frac{332.7}{6}=55.45$
58. (5); $\frac{34}{20} \times 100=170$
59. (4); $\frac{40-24}{40} \times 100=40 \%$
60. (1);
61. (2); $P=4,3 ; q=2,1 ; p>q$
62. (1); $\mathrm{P}=\frac{1}{3}, \frac{1}{4} ; \mathrm{q}=\frac{2}{3}, \frac{1}{2} ; \mathrm{p}<\mathrm{q}$
63. (5); $p=-7,-5 ; q=-7,-4$; No relation.
64. (4); $p=5,3 ; q==3,2 ; q \leq p$
65. (3); $p=-5 ; q= \pm 5 ; p \leq q$
66. (3); Let volume of cylinder $=\pi r_{1} 2_{h_{1}}$ Let volume of cone $=\frac{1}{3} \pi r_{2} 2_{h_{1}}$

Given $\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=5: 4$ and $\frac{h_{1}}{h_{2}}=\frac{4}{5}$
Req. Ratio $=\frac{\text { Volume }(\text { cylinder })}{\text { Volume cone }}$
$=\frac{\pi \mathrm{r}_{1} 2 h_{1}}{\frac{1}{3} \pi r_{2} 2_{h_{2}}}={ }^{3}\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}\left(\frac{\mathrm{~h}_{1}}{\mathrm{~h}_{2}}\right)$
$=\frac{3 \times 5 \times 5}{4 \times 4} \times \frac{4}{5}=\frac{15}{4}=15: 4$
67. (1); $\mathrm{P}=\frac{{ }^{3 \mathrm{c}_{1} \times 5 \mathrm{C}_{1}}}{12 \mathrm{c}_{2}}=\frac{5}{22}$
68. (4); Work done by A in 1 day $=\frac{1}{15}$

Work done by B in 1 day $=\frac{1}{16}$
1 day work of A and $\mathrm{B}=\frac{1}{15}+\frac{1}{16}$
6 day work of A and $B=\frac{6}{15}+\frac{6}{16}=\frac{31}{40}$
Work remaining $=1-\frac{31}{40}=\frac{9}{40}$
Time taken by A done
Remaining work $=\frac{\left(\frac{9}{40}\right)}{\left(\frac{1}{15}\right)}=\frac{27}{8}=3 \frac{3}{8}$
Total days $=6+3 \frac{3}{8}=9 \frac{3}{8}$
69. (3); Let the distance $=\mathrm{D}$

Let the speed of current $=x$
Time (upstream) $=\frac{D}{9.6-x}$
Time (downstream) $=\frac{\mathrm{D}}{9.6+\mathrm{x}}$
According to question
$2 \times$ Time (doconstream) $=$ Time (upstream)
$2 \times \frac{\mathrm{D}}{(9.6+\mathrm{x})}=\frac{\mathrm{D}}{9.6-\mathrm{x}}$
$19.2-2 \mathrm{x}=9.6+\mathrm{x}$
$3 x=9.6$
$\mathrm{x}=3.2=3 \frac{1}{5} \mathrm{~km} / \mathrm{hr}$
70. (3); Let the speed of bike $=x$

Moving in same direction, so relative speed $=$ $(x-3) \mathrm{km} / \mathrm{hr}$.
With this relative speed, the bike is seen for 4 $\min (1 / 15)$ up to a distance of $100 \mathrm{~m}(0.1 \mathrm{~km})$, So,
$\mathrm{x}-3=\frac{0.1}{\frac{1}{15}}$
$x=1.5+3=4.5$
71. (4); Initial speed $60 \mathrm{~km} / \mathrm{hr}$.

Means it travel 60 km in 1 hr , let x be half time,
Now it will take $(1+\mathrm{x})$ hr to travel 60 km with
speed of $50 \mathrm{~km} / \mathrm{hr}$
$\frac{60}{(1+\mathrm{x})}=50$
$5 \mathrm{x}=1$
$\mathrm{x}=\frac{1}{5} \mathrm{hr}=12 \mathrm{~min}$ halt per hour.
72. (2); Number of females $=\frac{2}{5} \times 100=40$

Males = 60
Use allegation

$\frac{7 x-29}{29-5 x}=\frac{3}{2}$
$\mathrm{x}=5$
average age of females $=7 x=7 \times 5=35$
73. (4); Quantity of milk $=\frac{4}{5} \times 75=60$

Water= 15
Let amount of water added.
$\frac{60}{15+\mathrm{x}}=\frac{3}{1}$
$60=45+3 x$
$x=5$
74. (1); $x+y=115$
$x+\frac{y}{2}=69$
$y=92$
75. (1); $5 x$: 6x, Let B investment was used for y months
$8 \times 5 \mathrm{x}: 6 \mathrm{x} \times \mathrm{y}=5: 9$
$\frac{40 x}{6 x y}=\frac{5}{9}$
$\mathrm{x}=12$
76. (2); $5+8+8=21$
77. (2); Females $=20+12+25=57$

Total males $=120$
Difference $=120-57=63$
78. (3); Total = 15

Males $=7$
Ratio $=15: 7$
79. (5); $120-8=112$
80. (1); Total females $=80$

$$
\text { Male (all } 3 \text { cat) }=8
$$

Req. $\%=\frac{8}{80} \times 100=10 \%$
81. (4); $\frac{1}{2} \times 30 \%$ of $4200=630$
82. (1); Number of female players who play lawn tennis

$$
\begin{aligned}
& =22 \% \text { of } 2000 \\
& =440
\end{aligned}
$$

Number of male player who play rugby $=13 \%$
of $4200-10 \%$ of 2000 $=346$
Req. number $=440-346=94$
83. (3); Number of females players who play Cricket = 40% of 2000
$=800$
Number of male player who play Hockey $=10 \%$ of
$4200-15 \%$ of 2000

$$
\begin{aligned}
& =420-300=120 \\
& \text { Ratio }=800: 120
\end{aligned}
$$

$$
=20 \quad: 3
$$

84. (2); Total player who play football cricket and lawn tennis $=(25+17+35) \%$ of 4200
$=77 \%$ of 42003234
Total female player who play football, cricket and lawn tennis $=(22+13+40) \%$ of 2000
$=75 \%$ of 2000
$=1500$
Total male $=$ Total Players - Female players
$=3234-1500$
$=1734$
85. (1); $\frac{346}{1050} \times 100=33 \%$ (approx)
86. (1); $P=240$ in Both years
87. (5); U $1998=160$

$$
U 2000=432
$$

$$
\% \text { increase }=\frac{432-160}{160} \times 100=170
$$

88. (1); $256+40+272=568$
89. (2); Q and S
90. (1); $(576+480)-(160+240)$

$$
\begin{aligned}
& =1056-400 \\
& =656
\end{aligned}
$$

91. (3); $n(S)=52$
$n(E)=2$
$\mathrm{p}(\mathrm{E})=\frac{2}{52}=\frac{1}{26}$
92. (3); $\frac{5_{\mathrm{C}_{3}}}{15_{\mathrm{C}_{3}}}=\frac{2}{91}$
93. (4); $\frac{{ }^{13} \mathrm{C}_{1} \times 13 \mathrm{C}_{1}}{52 \mathrm{C}_{2}}=\frac{13}{102}$
94. (2); Face card $=3 \times 4=12$

$$
\mathrm{P}=\frac{12}{52}=\frac{3}{13}
$$

95. (2); $\frac{8}{14}=\frac{4}{7}$
96. (2); Series is $\div 3, \div 4, \div 3, \div 4 \ldots \ldots$.
97. (4); Series is $+0.2, \times 0.3, \times 0.4$
98. (1); Series is $+23,+(23 \times 2),+(23 \times 3), \ldots \ldots$
99. (5); Series is $\times 3+1.5, \times 6+1.5 \times 2, \times 12+1.5 \times$ 4,
100. (3); Series is $\times 2^{2}, \times 4^{2}, \times 6^{2},+8^{2}, \ldots \ldots$.
