LIC AAO SECTION WISE QUANTITATIVE MOCK SOLUTIONS NUMERICAL ABILITY

31. (B) Let the breadth of rectangle = x

Length of rectangle = 120% of x

= 1.2x

Area of rectangle = $l \times b$

- $= x \times 1.2x$
- $= 1.2 x^2$

Area of square = x^2

Ratio =
$$\frac{1.2x^2}{x^2} = \frac{12}{10} = \frac{6}{5}$$

- **32.** (D) Amount after 1st year = $20,000(1+\frac{10}{100})^2$

Amount after 2^{nd} year = $24200(1+\frac{20}{100})^1$

- = 29040
- C.I. = 29040 20,000 = 9040
- **33.** (D) Total 12 balls, 2 balls should be green so for this no of ways = $4c_2$

Third ball can be any color except green,

Except Green 8 balls are there, so no. of ways = $8c_1$

Probability =
$$\frac{4c_2 \times 8c_1}{12c_3} = \frac{12}{55}$$

34. (D) Side of square = 28

Radius of circular garden = $\frac{28}{2}$ = 14

Area of space left out = area of square - area of circle

$$= 28 \times 28 - \frac{22}{7} \times 14 \times 14$$
$$= 784 - 616$$

- = 168
- **35.** (B) Investment ratio is 3:4:5

Let their times are a month, b month, c month respectively

Then the ratio of profits should be 3a:4b:5c

And this ratio is given to be 4:5:6

So
$$3a:4b:5c=4:5:6$$

$$a:b:c=\frac{4}{3}:\frac{5}{4}:\frac{6}{5}$$

$$= 80:75:72$$

- **36.** (C) 4 days earlier the work is to be completed, this means
 - In (40-4) = 36 days.

After 24 days, the number of days left = 36-24 = 12 days

Remaining work =
$$1 - \frac{1}{3} = \frac{2}{3}$$

Let x extra men are to be employed. So,

$$\frac{25 \times 24 \times 2}{3}$$
 = (x+25)× 12 × $\frac{1}{3}$

$$X = 75$$

37. (C) Let the speed of stream = x

$$\frac{36 - x}{36 - x} = 1\frac{3}{4}$$
$$\frac{56}{36 - x} = \frac{7}{4}$$

- 32 = 36 x

Time (downstream) = $\frac{56}{36+4} = \frac{56}{40} = \frac{14}{10} = \frac{7}{5} = 1\frac{2}{5}$

- = 1 hr 24 min
- **38.** (C) (30-20)% = 5+20

```
10\% = 25
```

Max marks = 100% = 250

Passing marks = 20% of 250+5

= 50+5=55

% passing =
$$\frac{55}{250} \times 100 = 22\%$$

39. (B) Let CP of one horse = x, then of other = 19500-x

One at loss of 20%, other at 15% gain.

SP is same

80% of x = 115% of (19500-x)

$$\frac{80}{100}$$
x = $\frac{115}{100}$ (19500-x)

X = 11500

C.P. of other = 19500 - 11500

= 8000

40. (B) Interval radius = $\frac{11.2}{2}$ = 5.6 cm=r

So outer radius = 5.6+0.4=6 am = R

Volume of metal = $\pi R^2 h - \pi r^2 h$

$$= \pi h(R^2 - r^2)$$

$$=\frac{22}{7}\times21\times(6^2-5.6^2)$$

$$=\frac{22}{7}\times 21\times 11.6\times 0.4$$

=306.24

- **41.** (4); The series is $\times 2 + 1$, $\times 1 + 2$ alternately
- **42.** (1); the series is $\div 3 7$, $\div 3 6$, $\div 3 5$,
- **43.** (5); the series is \times 1.5, \times 2, \times 2.5, \times 3,
- **44.** (2); The series is 23, + 19, -15, + 11, -7, + 3,
- **45.** (3); The series is $\times 1^2 + 4$, $\times 2^2 8$, $\times 3^2 + 12$, $\times 4 16$,
- **46.** (2); 27% of 12.5% of 8000 = 270
- 47. (3); Total graduate = $\frac{8000}{100 \times 100}$ (27 × 12.5 + 45 × 16 + 32.5 × 22 + 55 ×× 18.5 + 35 × 14 + 47.5 × 17)

Total non-graduate = 8000 - 3270 = 4730

48. (3): $\frac{35\% \text{ of } 14\% \text{ of } 8000}{14\% \text{ of } 8000} \times 100 = 4.9\%$ 8000

49. (2) Graduate = 55%, non = graduate = 45%

Req.% =
$$\frac{(55-45)}{45} \times 100 = 22.22 = 22\%$$
 (approx)
50. (2); Average = $\frac{Total}{6} = \frac{3270}{6} = 545$

50. (2); Average =
$$\frac{Total}{6} = \frac{3270}{6} = 545$$

- **51.** (3) x = 9.3; y = -12.7; No relation
- **52.** (1)x = 10,-6; y = 15,11; x < y
- **53.** (5) $x = \pm 68$, y = 68; $x \le y$
- **54.** (3)x=5/4,7/8; y=5/4,1/2; no relation
- **55.** (3) x = 7/3, 2/3; y = 5, 2/3; no relation
- **56.** (3); 26+27+16+33+27.6+42.5=172.1

- 57. (2); $\frac{332.7}{6} = 55.45$ 58. (5); $\frac{34}{20} \times 100 = 170$ 59. (4); $\frac{40-24}{40} \times 100 = 40\%$
- **60.** (1);